
Everyone’s Invited: A New Paradigm For Evaluation on Non-transferable
Datasets

David Jurgens, Tyler Finnethy, Caitrin Armstrong, and Derek Ruths
jurgens@cs.mcgill.ca, druths@networkdynamics.org,
{tyler.finnethy,caitrin.armstrong}@mail.mcgill.ca

School of Computer Science
McGill University

Abstract

Social media data mining and analytics has stimulated a wide
array of computational research. Traditionally, individual re-
searchers are responsible for acquiring and managing their
own datasets. However, the temporal nature of social data, the
challenges involved in correctly preparing a dataset, the sheer
scale of many datasets, and the proprietary nature of many
data sources can make extending and comparing computa-
tional methods difficult and often impossible. In light of this,
because replicability is a fundamental pillar of the scientific
process and because method comparison is essential to char-
acterizing computational advancements, we require an alter-
native to the traditional model of researcher-owned datasets.
In this paper we propose FREESR, a framework that gives re-
searchers the ability to develop and test method performance
without requiring direct access to “shared” datasets. As a case
study and first community resource, we have implemented
the FREESR paradigm around the task of Tweet geolocation.
The implementation showcases the clear suitability of this
framework for the social media research context. Beyond
the implementation, we see the FREESR paradigm as being
an important step towards making study reproducibility and
method comparison more principled and ubiquitous in the so-
cial media research community.

1 Introduction
When developing methods that run on social media data,
datasets are used to both establish the performance of one’s
method and also to compare it to existing alternatives, ide-
ally highlighting where advances have been made. More-
over, reproducing existing studies using their datasets is an
important means for the community to understand and char-
acterize the validity (and implicit assumptions) made by the
originators of the work. In both these cases, shared datasets
serve an essential role and in many domains, foster compar-
ative work on a single research objective.

The growth in social media data has led to many new re-
search questions and corresponding datasets have been cre-
ated for developing computational models in pursuit of these
questions. However, the proprietary nature of social media
leads to two key problems not traditionally faced when eval-
uating: (1) the Data Replicability problem, where privacy

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

restrictions or Terms of Service prohibit the direct sharing
of datasets between researchers, and (2) the Data Decay
problem where items in the original dataset are removed
by users as time passes, further exacerbating the replication
problem (McCreadie et al. 2012; Almuhimedi et al. 2013).
While social media data has still been used for evaluation
tasks within the research community (Ounis et al. 2011;
Nakov et al. 2013), research efforts have been hindered by
both problems, with the resulting datasets size-constrained
by the limited ability to reconstruct the original data and
with decay masking the initial state of the data.

To overcome both the Data Sharing and Data Replicabil-
ity problems, we present a new evaluation paradigm that al-
lows replicable evaluation on non-transferable datasets. In
contrast to the traditional setting where datasets are moved
to the location of computational methods and tested locally,
in our setting, methods are moved to the datasets themselves,
which are accessible through a secure API. The method is
then evaluated remotely and its evaluation results are shared
back with the experimenter. By allowing full access to the
data under controlled conditions that prevent outside data
transmission, this approach solves the Data Replicability
problem while staying within the data’s terms of use. Fur-
thermore, because computational models may be stored re-
motely with the data, this potentially solves the Data De-
cay problem by updating the reported performance of each
model as the underlying data changes over time. We re-
fer to this paradigm as the Framework for Reproducible
Evaluation of Experiments with Sensitive Resources, abbre-
viated as FREESR.

To quantify the benefits and challenges of FREESR, we
present a case study of implementing a shared real-world
task facing the Data Sharing and Data Decay problems.
Our work offers three main contributions. First, we define
the FREESR paradigm and both describe how it solves the
data replicability problem currently impacting social media
evaluations and outline the key challenges for a successful
task design. Second, we describe the process of creating a
FREESR-based task for geolocation inference, which aims
to infer the location of social media posts. The resulting
hosted task is made publicly-available for the research com-
munity and addresses a significant need for comparability
between current and future work. Furthermore, software
for the platform is available as open source, thereby mak-

ing it easier for new FREESR-based tasks to be developed
by other researchers with sensitive data. Third, we identify
how the core challenges for developing a FREESR task were
addressed during the development process and identify open
questions that need further improvement for robust evalua-
tion practices.

2 Related Work
The proposed FREESR model builds upon prior work in de-
veloping shared tasks, replicable evaluation design. and the
creation of social media datasets.

Shared Evaluation Settings Shared tasks have served an
important role in the research community by creating high-
quality data and annotations for evaluation and by attract-
ing community interest to particular research problem. The
shared task paradigm has seen wide-spread adoption with
standing evaluation conferences in many research areas,
such as Natural Language Processing with Senseval (Kil-
garriff and Palmer 2000), Information Retrieval with CLEF
(Braschler and Peters 2004) and TREC (Voorhees, Harman,
and others 2005), and Information Extraction with MUC
(Grishman and Sundheim 1996). Indeed, even full confer-
ences have included annual shared tasks to encourage work
on a particular problem (Tjong Kim Sang and Buchholz
2000; Morante and Blanco 2012) or have developed regu-
lar dataset sharing initiatives to encourage replicability, such
as that seen for ICWSM.1 Nevertheless, nearly all of these
tasks have evaluated using transferable datasets, which do
not pose the same replication challenges as social media
datasets.

Remote evaluation While the research community has
largely adopted public test sets for evaluating new ap-
proaches, several competitive programming platforms such
as CodeChef2 and HackerRank3 have incorporated hidden
test sets. These competitions focus on a computational task,
such as computing the greatest common divisor in the min-
imum time. Each competition defines (a) the input format
of the data, representing a particular instance of the task
to be solved and (b) the expected output format of the pro-
gram’s solution to an input instance. While some examples
are shown publicly to let competitors test their solution, to
compete on these platforms, developers submit a program,
which is subsequently tested on unseen input that is never
released.

Twitter Datsets Given the utility of Twitter data, multi-
ple corpora have been proposed as community resources
for tasks such as sentiment analysis (Pak and Paroubek
2010), event detection (McMinn, Moshfeghi, and Jose
2013), and geolocation inference (Eisenstein et al. 2010;
Mahmud, Nichols, and Drews 2012). Initial attempts to cre-
ate publicly-sharable corpora from anonymized Twitter data

1http://icwsm.org/2015/datasets/datasets/
2http://www.codechef.com/
3http://www.hackerrank.com

(as opposed to post IDs) resulted in the corpus being re-
moved due to violating terms of service (Petrovic, Osborne,
and Lavrenko 2010); as a result, all shared datasets are re-
leased post IDs that must be used in conjunction with the
Twitter API to retrieve the dataset’s content. These post ID
datasets still encounter the Data Decay problem since the
underlying posts may be deleted and also are constrained
by the Twitter API rate limits, which effectively limits how
many posts can be feasibly obtained by researchers.

Despite the challenges of using post ID-based datasets,
several shared tasks incorporated Twitter data in this mat-
ter. Ounis et al. (2011) built a Twitter corpus as a part of
a TREC shared task, but later note that up to 22% of posts
had been removed within several months (McCreadie et al.
2012) . While their follow-up analysis showed that the dele-
tions did not affect one system more than other of those that
participated in the task, the high deletion rate underscores
the challenge of supporting later evaluation after much of the
data has been removed. Indeed, during organization of a task
for sentiment analysis on Twitter, Rosenthal et al. (2014) re-
port nearly half of annotated training data was deleted by the
time the task began. Thus, a FREESR task using Twitter data
can serve an import role by allow the community to perform
experiments on more data than is feasible by the API-access
alone and by being able to conduct experiments on identical
data.

3 The FREESR Paradigm
The FREESR paradigm addresses the Data Sharing and Data
Decay problems using a hosted evaluation environment that
securely allows access to unseen data while providing full
transparency in all other areas of evaluation. Before dis-
cussing the design choices involved in implementing a par-
ticular task using FREESR, we first formalize the general ter-
minology for each part of the system and how the parts in-
teract. Figure 1 shows the high-level diagram of each com-
ponent and their interactions.

An experimenter is any individual intending to perform
an experiment that tests the performance of a particular
method on a non-distributable dataset. To conduct an exper-
iment, the experimenter creates a submission that encapsu-
lates the method as (a) executable software, (b) a list of soft-
ware dependency requirements, such as machine learning
or natural language processing libraries, and (c) other non-
software resources needed by the method, such as gazetteers
or word lists.

The submission is transmitted remotely through a user in-
terface to a FREESR host, which carries out the experiment
on behalf of the experimenter. The host assembles the pieces
of the submission to create a model that receives access to
the dataset as input and produces results for the FREESR-
based task in a predefined format. Dataset access is medi-
ated through an Application Program Interface (API), which
defines what data is available and how it may be accessed
and transformed.4 The individual or organization responsi-

4The API for a particular task may take on many forms beyond
a software-based API, such a specification for a particular ordering
of command-line arguments, predefined input file formats, or even

Submission
Results

Experimenter

Evaluation
Metrics

Dataset
(private)

FREESR Host

Experiment Results

Computational
Model

API Access

Execution Environment

Software

Requirements

Submission

Resources

User
Interface

Figure 1: A diagram of the general FREESR testing model. An experimenter creates a submission of software and its resources,
which is transferred to a remote host. The host assembles the submission’s pieces into an computational model, which is
then run in a secure execution environment that provides API-based access to the sensitive data. The model’s results are then
transmitted back to the experimenter.

ble for hosting a particular FREESR-based task is referred to
as its operator.

The experiment itself is conducted within an execution
environment which defines and enforces which resources
and parts of the host system a computational model may ac-
cess during its execution. The results of the computational
model are then scored according to one or more evaluation
metrics. The evaluation scores are returned to the experi-
menter through a user interface.

4 Challenges
The decoupling of experimenter from experiment and the
remote execution of arbitrary computational models intro-
duce multiple challenges for the FREESR paradigm, both for
experimenter and operator. Following, we define the main
challenges.

Usability
The FREESR paradigm requires that any computational
method used in an experiment be designed according to a
fixed interface for accessing the sensitive dataset. How-
ever, requiring a particular interface introduces constraints
on the method’s design and the ability of an experimenter to
adapt their methodology to the host’s requirements. Three
usability challenges follow from the API requirements of a
FREESR-based task.

Challenge 1 - Experimental Design: Accessing data
solely through a fixed API or similar interface can poten-
tially limit the design of a method or how the method can
effectively use the data. For example, if a software inter-
face is used to enforce an API, this requires all methods be
implemented in the programming language of the API and
also that all dependencies of the method be available in that
language. The structure of the API may also introduce con-
straints and inconveniences if experimenters are required to
subclass and include multiple predefined functions.

Challenge 2 - Data Access: Many experimenters refine
large datasets to only the pertinent data; for example, ex-
periments with Twitter commonly filter data to only those

a connection to databases that supports specific queries.

posts written in English, which can remove over half of
all posts (Liu, Kliman-Silver, and Mislove 2014). Because
experimenters cannot filter the data to match their needs
ahead of run time, either the method must include additional
functionality to perform this filtering, thereby performing
needless computation for methods that aggressively filter, or
the framework itself must offer different views of the same
dataset, depending on method needs. The usability issue
of filtering or otherwise transforming the dataset is com-
pounded by repeated runs of methods that perform the same
type of filtering, which would only have needed to be per-
formed once if the dataset was available locally.

Challenge 3 - Interface Stability: Once an API is de-
fined for a particular FREESR task, any changes to the API
can become a problem. If experimenters have designed a
submission based on now depreciated features, they may
have to significantly rework their design to run on the up-
dated framework. Although the framework operators will
often not anticipate significant changes, unpredictable ad-
vancements within the field or security risks can force a re-
working of the API. Furthermore, if the FREESR host sup-
ports re-running models as the data decays in order to reflect
the current performance, non-compatible API changes may
break its ability to re-run models that have not been updated
to the new API.

Privacy
The requirement that experimental models be submitted to a
host introduces three privacy-related challenges.

Challenge 4 - Intellectual Property: Communicating re-
search software to a remote server raises the possibility that
an adversarial operator of a FREESR-based task could steal
an experimenter’s intellectual property. Conducting research
with computational methods is often a long-term process,
with hypotheses being proposed and evaluated in an effort
to maximize performance on the task at hand. Platforms
such as Arxiv.org provide an important open-access out-
let for in-progress research by allowing papers and results to
be presented to the research community prior to peer review.
However, no comparable platform hosts in-progress compu-
tational methods themselves while they are being tested and

improved, potentially due to the fear of being scooped on an
experimental result. A FREESR-based task raises the issue
that if a novel method is submitted for evaluation, the yet-
unpublished details of the approach could be stolen by an
adversarial host for publication without credit to the original
inventor.

Challenge 5 - Experimental Integrity: A similar pri-
vacy challenge centers on trust of the results. An adversarial
operator with conflicting interests could alter the scores re-
turned for a competitor’s submissions. These lower scores
could potentially discourage otherwise-successful research,
or allow the adversarial experimenter to identify and develop
upon successful a line of work before its first public disclo-
sure.

Challenge 6 - Proprietary Resources: Beyond
academia, research often occurs in industry and, in many
cases, relies on proprietary software that cannot be dis-
tributed. While in the traditional evaluation setting, the soft-
ware may be kept in-house and tested locally on the dataset,
evaluation with a FREESR-based task would require that this
proprietary software be uploaded to a third party host for re-
motely execution. Furthermore, in some legal jurisdictions,
a new method may constitute intellectual property and there-
fore require specific actions be performed to secure its rights
before its software could be shared. Thus, FREESR may
impose a sharing requirement beyond what is feasible for
industrial research to take part in, thereby creating a tiered
system where only academic experimenters are able to test
their methods.

Host Security
Hosting a FREESR-based task introduces two challenges due
to the remote execution of arbitrary code.

Challenge 7 - Resource Integrity: The hosting platform
represents a shared computing resource, which may be at-
tacked by traditional adversarial means, such as deleting
data, infecting the system with malware, or otherwise in-
terfering with proper functioning of the operating environ-
ment. Furthermore, an adversarial experimenter may seek
to monopolize the host by submitting an excessive number
of experiments to run, thereby denying other researchers the
ability to efficiently obtain results for their experiments.

Challenge 8 - Data Security: Beyond interfering with
the hosting system, remotely executed code may violate the
privacy of data and software on the system. Most impor-
tantly in the FREESR setting, an adversarial experimenter
could leak the dataset, such as by directly communicating
it through a new network connection or by encoding it as
part of the results. Similarly, because the host may simul-
taneously be storing the experiments of other researchers,
a malicious submission could potentially access and com-
municate other submissions’ code, performing intellectual
theft.

5 Geolocation Inference
Many social media analyses have used location meta-data to
examine spatial phenomena such as well-being (Schwartz et
al. 2013), language variation (Graham, Hale, and Gaffney

2014), topical discussions (Strnadova, Jurgens, and Lu
2013), and disaster response (Lingad, Karimi, and Yin
2013). While location data has proven useful, often very lit-
tle social media data comes already annotated with the loca-
tion of its origin. For example, less than 1% of Twitter posts
come with GPS locations (Hecht et al. 2011). The task of
geolocation inference, also known as geoinference, is to in-
fer the location of the remaining posts that do not come with
location, thereby providing a substantial boost in volume to
subsequent analyses requiring spatially-located content.

Geoinference is an ideal task for FREESR for three rea-
sons. First, the majority of approaches have been designed
for and evaluated on Twitter data, which is proprietary and
cannot be redistributed. Although the full datasets cannot
be released, two geoinference datasets have been made pub-
licly available as Twitter post IDs (Eisenstein et al. 2010;
Mahmud, Nichols, and Drews 2012), thereby allowing inde-
pendent reconstruction of the original data. However, due to
the rate limitations in reconstructing data, these datasets are
quite small compared to those used in recent work and also
have been further reduced in size due to data decay. Indeed,
releasing larger datasets for geoinference as Twitter post IDs
is infeasible due to the practical limitations of accessing the
original data through the Twitter API; for example, at current
rate limits, recreating the dataset of Jurgens (2013) would
take over 5,580 years.

A second motivation for selecting geoinference as a case
study in FREESR task design is the need to test the feasibil-
ity of supporting the diversity of approaches. Geoinference
techniques vary considerably in how locations are inferred,
with some approaches using individual’s social network in
Twitter and others analyzing the text of an individual’s posts
for clues to their locations. Thus, the framework must be
sufficiently general to support both the type of data access to
each approach and the software dependencies and resources
needed by each.

A third practical motivation for selecting geoinference is
the current need for comparative evaluation between meth-
ods. Currently, geoinference methods have been tested in
highly varied settings, with no standardization in evalu-
ation metrics and with dataset sizes ranging from a few
million posts (Li et al. 2012; Li, Wang, and Chang 2012;
Rout et al. 2013) to hundreds of millions of posts or more
(Jurgens 2013; Compton, Jurgens, and Allen 2014). As
such, a full comparison between methods has been effec-
tively prevented unless the computational models them-
selves are recreated and tested in one place in a setting that
has access to comparable amounts of data as used in the orig-
inal experiments, as was done in Jurgens et al. (2015).

6 A Geoinference Testing Framework
The architecture of the geoinference testing framework,
shown in Figure 2, mirrors the FREESR design and has four
main aspects: (1) the datasets used for testing, (2) the API
and dependency specifications, (3) the hosting architecture,
and (4) the user interface. Following, we describe how each
aspect was implemented and how its design addresses the
challenges posed when hosting a FREESRtask.

Local Backend

Experimenter
Interface:

Job submission,
monitoring and

all results

Framework host

Community Users

Job Status
and Results

Model
output

Experimenter

Community
Interface:

Public model
results

Computational
Model

Model Compilation
and Validation

Dataset
Model

Execution
Engine

Cluster Backend

Dataset
Model

Execution
Engine

Droplet backend

Dataset
Model

Execution
Engine

Computational
Model with

dependencies

Evaluation
Metric

Figure 2: A diagram of the geoinference testing framework. Using a web interface, experimenters submit requests for new
experimental runs. Each submission includes software for computational model and a specification of its software dependencies.
This submission is then retrieved and validated by the hosting, which in turn schedules the experiment in an appropriate
execution environment. Once the experiment is completed, the results are scored and communicated to the experimenter using
a web interface, with an option to display the results publicly for the research community to see.

Posts Users Bi-D. Mentions Geolocated posts

9/14–9/14 1,243,328,563 72,021,244 26,429,346 1,245,913,305
8/14–9/14 2,478,859,385 94,328,017 55,821,290 2,482,449,903
7/14–9/14 3,918,859,653 118,856,427 81,422,484 3,923,193,848
6/14–9/14 5,190,703,686 138,918,914 106,887,695 5,196,291,219
5/14–9/14 6,457,017,352 155,334,765 130,459,422 6,464,384,438
4/14–9/14 7,657,048,348 168,993,318 153,220,866 7,665,185,573

Table 1: Summary of the six available datasets, with their
relative sizes and the size of the social network extracted
from bi-directional mentions within each.

Dataset
Prior geoinference testing settings have used datasets of sig-
nificantly different sizes, in part due the disparity in access
to large volumes of Twitter data. Therefore, in the proposed
evaluation task, we selected datasets with two goals in mind:
(1) to be representative of all Twitter data, and (2) to be
of sufficient size that a method would be required to adapt
its computational complexity to the scale required for real-
world operations. Hence, the performance of any geoinfer-
ence method on these datasets would be expected to gener-
alize to new data.

Datasets were constructed from the Twitter gardenhose,
which is roughly a 10% sample of all Twitter volume. The
initial framework includes six official datasets, consisting of
one to six months worth of Twitter data. Table 1 shows
the size and properties of each. The single-month dataset
is equivalent in size to the largest dataset used in geocoding,
though in practice most approaches have aggressively fil-
tered the data to a subset matching certain properties, such
as those posts containing mentions or only those that have
GPS data. Having a standardized dataset created from an
query-independent sample of Twitter data potentially miti-
gates biases from using a dataset sampled from the Twitter
API, which requires query parameters (e.g., hashtags or a
geographic bounding box) and is known to not to be fully

representative of all Twitter data (Morstatter et al. 2013).
We intentionally selected the smallest dataset to include

a full month of data in order to provide a robust sample of
the types of posts and cyclical volumes seen over a short-
scale time period. We anticipate that a geoinference method
would be expected to perform well given this much data,
so the dataset reflects an ideal starting point for testing new
methods. However, we do acknowledge that many geoin-
ference methods have used smaller datasets, potentially due
to their computational complexity. Therefore, the testing
framework also includes unofficial datasets consisting of 1,
3, 7, and 14 days worth of posts from the September 2014
portion of the dataset in order to models to be designed
and tested with increasingly-larger amounts of data.5 Fur-
thermore, the single-day dataset is sufficiently small to be
completely recreated using Twitter’s API, taking 26.5 days
with current rate limits; because the framework is fully open
sourced, having a recreated dataset enables researchers to
validate the results of the host locally on identical data,
which directly addresses Challenge 5.

Each dataset is partitioned into five folds that are used
with cross-validation during evaluation. Partitions remain
fixed, ensuring full comparability between submissions.

Geoinference API
Geoinference methods have typically adopted a variety of
data for learning how to infer the location of a post. To ef-
fectively support current and future approaches, the API and
its implementation were designed with three goals in mind:
(1) the interface must place minimal requirements on how
the method is to perform training or predict location, (2) all
Twitter data provided as input should be made available in its

5In practice, the framework design allows methods to easily
subsample from the full datasets, so using all posts is not strictly
necessary.

class GIMethod(object):
"""The abstract base class for all geolocation

inference systems."""
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def train_model(self,settings,dataset,model_dir):

""" Builds a geoinference model using the settings
and dataset provided and returns a trained GIModel."""

pass

@abc.abstractmethod
def load_model(self,model_dir,settings):

"""Loads a subclass of ‘GIModel‘ from the
directory model_dir"""

pass

class GIModel(object):
"""The abstract base class for trained

geoinference models."""
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def infer_post_location(self,post):

"""Infers the lat-lon location for the
post specified."""

return

def infer_posts_locations_by_user(self,user_id,posts):
"""This method infers the locations for each of

the user’s posts"""

(a) Python API Abstract Base Class

public interface GIMethod {

/**
* Trains a new method from the provided dataset, returning

* the trained model

*/
GIModel train(JSONObject settings,

Dataset dataset, File modelDir);
/**
* Loads and returns a trained method from the

* data in the directory

*/
GIModel load(File modelDir);

}

public interface GIModel {

/**
* Infers the location of the provided post

*/
LatLon inferPostLocation(JSONObject post);

/**
* Infers the location of each post for the provided user

*/
List<LatLon> inferPostLocationsByUser(long userId,

List<JSONObject> post);
}

(b) Java API Interface

Figure 3: The API specification for computational models in the geoinference testing framework.

original format,6 thereby letting experimenters decide which
portions should be used, and (3) commonly used features
such as the twitter users’ social network should be precom-
puted and made accessible through the API.

To satisfy the first goal, our API is designed in Python and
Java, providing support for models in two of the most pop-
ular languages. The API requires that a computation model
must either extend a Python abstract base class or imple-
ment a Java interface, both shown in Figure 3. The choice
of supporting Python and Java was also strongly motivated
by both languages’ support for software dependency man-
agement. In our setting, Python programs may use pip
and easy install to automatically download and in-
stall public Python packages; similarity, Java programs may
use Apache Maven to install libraries. Importantly, both
language’s dependency management suites cover the most
widely-used libraries that will be needed for geoinference,
such as SciKit (Pedregosa et al. 2011) and WEKA (Hall et
al. 2009) for machine learning.

The interface in both languages is sufficiently general to
capture the two main aspects of geoinference: training and
location inference. The GIMethod class encapsulates the
training portion of geoinference. Twitter data is accessed
through the Dataset class, provided as an input parameter
to the train model method. Specifically, the Dataset
class provides access to iterate through all posts arbitrarily
and iterate through each user’s posts, one at a time. Only
iterative access is provided because the datasets are pro-
hibitively large for use in-memory. The Dataset class also
provides direct access to (a) different social networks under-

6The Twitter API provides access to posts as JSON ob-
jects, with full details at https://dev.twitter.com/
overview/api/tweets.

lying the data, such as all edges between two users mention-
ing each other, and (b) estimated locations for users based
on the data they provide, such a self-reported location name
in their profile. While this data could easily be computed
by any GIMethod during its training stage, precomputing
this data and providing it via the Dataset class can signif-
icantly reduce the computational run-time and potential for
experimenter mistakes.

The GIModel class encapsulates the logic for infer-
ring the location of a post. The infer post method
provides a single post for which the method must make
a prediction. However, a user’s posts may collectively
provide clues to their location and thus we include the
infer posts locations by user method to allow
approaches to take advantage of all of a user’s data at once.
Despite the common goal of predicting location, geoinfer-
ence methods vary in how the location is represented, which
is commonly either a city name or a latitude-longitude point.
Therefore, we designed both prediction methods to support
the most general form of output as a latitude and longitude
point. Geoinference methods that were originally designed
to report a city name can simply report a canonical point
denoting that city. This representation facilitates easy com-
parison between approaches and a point may always be con-
verted to a location name via reverse geocoding.

The resulting API directly addresses Challenges 1, 2, and
3 for Usability. By designing a general-purpose API with
minimal requirements for how geoinference is to be per-
formed, the API places few limits on experimental design.
Furthermore, by supporting the two of the most popular pro-
gramming languages, each of which provide extensive exter-
nal package management, the API does not restrict experi-
menters to a particular set of software dependencies. Sec-
ond, the Dataset class provides access to many precom-

(a) Job submission (b) Experimenter dashboard (c) Public results

Figure 4: The core pieces of the User Interface, which allows researchers to (a) submit new experiments, (b) monitor the
progress and results of their current experiments, and for completed experiments, publicly release the experiment’s results with
links code and a paper, and (c) view publicly-released results on the official datasets.

puted results, such as the social network, which greatly re-
duces the burden on the experimenter for performing these
routine tasks and potentially allows for faster design and im-
plementation. Finally, by keeping the API to a minimal set
of operations and re-using the original format of the data, the
interface can remain stable while still supporting a variety of
methods.

All software for the experimenter is available
at https://github.com/networkdynamics/
geoinference-method-template. To reduce the
effort required to create a new method, the repository
contains example implementations in each language show-
ing how to perform basic operations for both text- and
network-based geoinference methods.

Host Architecture
The host architecture is structured as three components: (1)
a validation module that ensures the submission provided
by the experimenter functions as a working geoinference
method, (2) a backend service that is responsible for run-
ning the experiment in a secure environment and recording
the model output, and (3) a series of evaluation methods
that score the output. Underlying these three components
is a centralized database that tracks the current state of the
experiment, e.g., recording that the submission is currently
running or has completed.

The host may potentially receive multiple submissions,
necessitating a queue for running each experiment sepa-
rately in order to guarantee sufficient execution resources.
However, requiring experiments to wait in a queue before
execution can potentially delay detecting easily-fixable is-
sues, such as compilation problems, missing external depen-
dencies, or incorrect output formatting. Together these expe-
riences may discourage development and hinder the overall
goal of easily experimental replication. Therefore, the vali-
dation module is included as a first step prior to the model
being submitted to the queue in order to rapidly commu-
nicate back to the experimenter if a problem occurs when
instantiating their model.

To account for the potential interest by the research com-

munity, the host implementation was designed with multi-
ple execution environments. A local server is used for in-
house testing and development, while large experiments and
outside submissions by other experimenters are executed as
jobs on a shared cluster. As a possibility for future expan-
sion, we have also developed a prototype on DigitalOcean
droplets,7 which is a cloud hosting service that allows a new
virtualized server instance to be created from an existing
disk image; in our setting, the image already contains the
Twitter datasets and only requires receiving the submission
to run an experiment.

In our implementation, the validation module and back-
end services share the same functionality for running a com-
putational model. First, the dependencies of the model are
satisfied, ensuring that no external resources are needed by
the model. Then, a secure virtual machine sandbox is started
that prohibits all outside network access and enables write
access only to a specified output directory. Specifically, the
Docker platform is used to host a locked-down Linux vir-
tual machine.8 The software used by computational model
is only ever executed within this sandbox to ensure host in-
tegrity. Finally, the output of the model is verified to ensure
that no sensitive data is leaked.

This design satisfies Challenges 7 and 8 for Resource In-
tegrity and Data Security. Because the model has extremely
limited write permissions and is encapsulated in a virtual
machine, the model’s execution cannot affect the underlying
host. Similarly, because each model is isolated in its own
virtual machine, the software from other experimenters can
never be accessed. Furthermore, because the model cannot
establish a remote connect nor write arbitrary output data,
the security of the sensitive data is guaranteed.

User Interface
The user interface defines how experimenters may interact
with the host. Figure 4 shows the three key pieces of the
interface. Once an experimenter logs into the interface,

7https://www.digitalocean.com
8https://www.docker.com/

they may submit new experiments as jobs to be executed
(Fig. 4a). The experimenter selects which dataset is used
and may further refine the dataset to only the specific subset
needed by their method, e.g., only posts for those users in
the social network, in order the avoid needless computation.

Each job is assigned a new unique name that allows the
job and its results to be monitored on the Experimenter
Dashboard (Fig. 4b). Experimental results include the scores
produced by the evaluation metrics and a link to access a ran-
dom sample of 10,000 twitter post IDs within the dataset, the
locations inferred by the method for those posts, and the er-
rors of the inferences. Because the full post content may be
obtained from the Twitter API using the post IDs, this sam-
ple enables the experimenter to quickly recreate a small por-
tion of the dataset and analyze their method’s performance
on specific posts.9 Furthermore, the ability to access a sam-
ple of results directly addresses the Challenge 5; because
the sample is representative of all results and because the
evaluation methodology is publicly known, computing the
evaluation metrics on the sample’s predictions should serve
as a close approximate to the scores reported on the user in-
terface, thereby providing the experimenter some assurance
that the host-reported results are accurate.

Once an experiment has completed, the experimenter can
opt to make the results shared on the host’s public results
page (Fig. 4c). Each public result may be linked by the ex-
perimenter to an article or webpage describing the method
and to a software repository hosting an implementation of
the method. The public results page serves two essential
purposes. First, the page maintains an accurate list of state
of the art for each dataset, to which new results may be easily
added as the field progresses. Second, because the underly-
ing datasets undergo data decay (i.e., tweets are deleted), the
page can be periodically updated with the new performance
numbers for each system on the current data, which allows
tracking the models’ performance changes over time. Ad-
ditionally, actively maintaining a full list of results creates
an aspect of gamification, which may foster a sense of com-
petition and encourage new approaches; and knowledge of
which methods do well on some metrics and not on others
can facilitate a comparison of method subtype strengths.

7 Discussion
The process of implementing a geoinference task in FREESR
raises several open questions for the design of future tasks.

Performance The volume of social media gives rise to
very large datasets. Normally, experimenters identify and
extract the relevant portions of this data, thereby reducing

9We acknowledge that providing some output back to the exper-
imenter creates a limited opportunity for establishing a side channel
for communicating the sensitive data, e.g., encoding post content
using a binary representation in the location predictions. However,
this risk is extremely limited since (a) the experimenter has no con-
trol over which posts are sampled and (b) the bandwidth of such a
side channel would be limited by the experiment’s ability to repeat-
edly run new experiments.

experimentation time and improving performance. How-
ever, within FREESR, experimenters do not have access
to the data, and within our implementation, experimenters
cannot cache any memoized results or prepare an already-
filtered version of the dataset to reduce the amount of data
(e.g., limiting the dataset to 100 posts per user). Our im-
plementation does provide some commonly precomputed
resources for geoinference, such as the social network or
user’s home locations. However, individual models may
have custom needs. One potential solution is for a host to
support individual workspaces for each experimenter, which
persist data and results between trials of an experimental
model. Such workspaces could allow also models to resume
from a partially-finished state which may aid in debugging
and avoid recomputing initial results when testing multiple
variations of a single model. However, workspaces intro-
duce additional security concerns for maintaining data pri-
vacy.

Development Ease Customarily, most computational
methods are iteratively designed, with extensive debugging
and manually analyzing problematic cases. This develop-
ment process becomes more complicated for a FREESR-
hosted task because access to the dataset is restricted. The
current implementation mitigates this complication to some
degree by (1) providing error tracebacks through the the Job
Dashboard if a method encounters problems when running
and (2) if the job runs successfully, returning a random sam-
ple of 10,000 tweet IDs and the location predictions made by
those methods. The first feature allows experimenters to de-
bug their method implementations, while the second allows
inspecting the errors made by the model.

Nevertheless, we anticipate that for many experimenters
working with FREESR-based tasks, the development process
will pose a significant challenge but one which operators
may address in three ways. First, the operator must ensure
that sufficient information for debugging and improvement
is returned, and when possible, allow for experimenters to
test and develop their approaches locally using a subset of
the data. Second, the scale of the data may not have been
previously encountered by experimenters, leading to unex-
pected performance difficulties. Hence, an operator may
provide the ability for the experimenter to create arbitrary
amounts of artificial data locally to aid them in testing the
scalability of their method. Third, because much or all of the
sensitive data is potentially never seen by an experimenter,
an operator must make sure that the characteristics of the
data are thorougly specified, e.g., for text data, specifying in
which languages the text is written.

Cost and Longevity A research task can attract signifi-
cant amounts of interest, which may span several years de-
pending on the scale and difficulty of the problem. For ex-
ample, the movie recommendation competition for the Net-
flix Prize attracted over 44,000 submissions from more than
5,000 teams over a three-year period. If the task is FREESR-
based, this community interest potentially raises issues for
an operator, who must provide the resources required to

host and maintain the task over long periods of time. The
costs required for maintaining a task may also create a neg-
ative incentive for new researchers or those in emerging re-
gions without access to significant funding to sustain new
FREESR-based tasks. As a potential solution, we are test-
ing the feasibility of hosting tasks with cloud-based services
such as DigitalOcean, which could provide a way for experi-
menters to fund the cost of their own experiments while still
maintaining secured API-only access to the sensitive data.
However, significant engineering and hosting challenges re-
main for this issue to be resolved effectively.

A related issue arises once an operator can no longer
maintain a host. The non-transferable nature of the data po-
tentially prohibits other operators from assuming responsi-
bility for hosting the task. While the results themselves may
be persisted on websites within the research community, ad-
ditional solutions will need to be explored for transitioning
datasets between hosts. One exciting possibility would be
that the data owners themselves host FREESR-based tasks
for the research problems in which they are interested; such
industry-sponsored tasks could offer new insights into re-
search problems using previously-inaccessible data.

Unaddressed Challenges While our geoinference task
was largely successful at addressing the challenges posed by
the FREESR paradigm, two remain unaddressed: Challenge
4 for protecting intellectual property and the related Chal-
lenge 6 for supporting proprietary resources. Challenge 4
requires that the host operator is prevented from examining
submission content, effectively treating it as a black box. To
address this challenge, we initially tested having the sub-
mission procedure automatically use code obfuscation on
the software prior to transmission, which would render the
code uninterpretable to the operator. However, while obfus-
cation libraries are available for both of the supported lan-
guages, obfuscating the submission proved extremely dif-
ficult because the experimenter’s software must conform to
the software-based API; the changes to the class and method
names resulted in the submission software not correctly im-
plementing the API contract and being rejected by the val-
idation step. Addressing the legal issues surrounding intel-
lectual property for Challenge 6 will likely require more than
purely technical changes in order to allow for proprietary
software to be used on the host, but is nonetheless essential
for allowing all types of experimenters to participate.

Insight Beyond developing computational methods, re-
search on a shared task often provides significant insight
into which parts of the task are most difficult. For exam-
ple, prior geoinference work has noted the difficulty of infer-
ring locations for individuals that are active travelers across
large distances (Compton, Jurgens, and Allen 2014). Our
FREESR-based task still enables researchers to provide this
type of insight because IDs for samples of the data are re-
turned, thereby allowing the data to be reconstructed and
analyzed by the experimenter. However, in some settings,
the data may not be reconstructable on the experimenter’s
side at all, such as for medical records, sensitive images, or

for social media platforms without an API. While compu-
tational methods can still be developed in these settings, the
lack of data access can potentially stymie meaningful insight
into the task’s particular research problem.

8 Conclusion
Social media presents two significant obstacles for compar-
ative evaluation due to limitations on sharing datasets and
the temporal nature of the datasets themselves, where con-
tent may be deleted over time. This paper has presented a
new evaluation paradigm, FREESR, designed to address both
challenges. To allow access to sensitive data, a FREESR-
based task allows experimenters to submit their methods for
execution within a secure, remote environment that provides
programmatic access to the dataset without the possibility
of data redistribution. Using a case study on a real-world
problem, we meet a current research community need by im-
plementing and hosting a FREESR-based geoinference task,
showcasing the benefits of the model and identifying how
many of the challenges can be addressed. Both the task
and the hosting software are made available to the research
community for use at http://networkdynamics.org/
resources/software/. Beyond the implementation, we
see the FREESR paradigm as being an important step to-
wards making study reproducibility and method comparison
more principled and ubiquitous in the social media research
community, and potentially expanding the paradigm to other
research areas using sensitive, non-transferable data such as
those with medical records.

References
Almuhimedi, H.; Wilson, S.; Liu, B.; Sadeh, N.; and Ac-
quisti, A. 2013. Tweets are forever: a large-scale quanti-
tative analysis of deleted tweets. In Proceedings of CSCW,
897–908. ACM.
Braschler, M., and Peters, C. 2004. Cross-language evalu-
ation forum: Objectives, results, achievements. Information
Retrieval 7:7–31.
Compton, R.; Jurgens, D.; and Allen, D. 2014. Geotag-
ging one hundred million twitter accounts with total varia-
tion minimization. In IEEE International Conference on Big
Data.
Eisenstein, J.; O’Connor, B.; Smith, N. A.; and Xing, E. P.
2010. A latent variable model for geographic lexical varia-
tion. In Proceedings of EMNLP, 1277–1287.
Graham, M.; Hale, S. A.; and Gaffney, D. 2014. Where in
the world are you? geolocation and language identification
in twitter. The Professional Geographer 66(4):568–578.
Grishman, R., and Sundheim, B. 1996. Message under-
standing conference-6: A brief history. In Proceedings of
COLING, volume 96, 466–471.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
an update. ACM SIGKDD explorations newsletter 11(1):10–
18.

Hecht, B.; Hong, L.; Suh, B.; and Chi, E. 2011. Tweets
from justin bieber’s heart: the dynamics of the location field
in user profiles. In Proceedings of CHI, 237–246. ACM.
Jurgens, D.; Finethy, T.; McCorriston, J.; Xu, Y. T.; and
Ruths, D. 2015. Geolocation prediction in twitter using
social networks: A critical analysis and review of current
practice. In Proceedings of the 9th International AAAI Con-
ference on Weblogs and Social Media (ICWSM).
Jurgens, D. 2013. That’s what friends are for: Inferring
location in online social media platforms based on social re-
lationships. In Proceedings of ICWSM.
Kilgarriff, A., and Palmer, M. 2000. Introduction to the
special issue on senseval. Computers and the Humanities
34(1-2):1–13.
Li, R.; Wang, S.; Deng, H.; Wang, R.; and Chang, K. C.-
C. 2012. Towards social user profiling: unified and dis-
criminative influence model for inferring home locations. In
Proceedings of KDD, 1023–1031. ACM.
Li, R.; Wang, S.; and Chang, K. C.-C. 2012. Multiple lo-
cation profiling for users and relationships from social net-
work and content. Proceedings of the VLDB Endowment
5(11):1603–1614.
Lingad, J.; Karimi, S.; and Yin, J. 2013. Location extraction
from disaster-related microblogs. In Proceedings of WWW,
1017–1020.
Liu, Y.; Kliman-Silver, C.; and Mislove, A. 2014. The
Tweets They are a-Changin’: Evolution of Twitter Users and
Behavior. In Proceedings of ICWSM.
Mahmud, J.; Nichols, J.; and Drews, C. 2012. Where is this
tweet from? inferring home locations of twitter users. In
Proceedings of ICWSM.
McCreadie, R.; Soboroff, I.; Lin, J.; Macdonald, C.; Ounis,
I.; and McCullough, D. 2012. On building a reusable twitter
corpus. In Proceedings of SIGIR, 1113–1114. ACM.
McMinn, A. J.; Moshfeghi, Y.; and Jose, J. M. 2013. Build-
ing a large-scale corpus for evaluating event detection on
twitter. In Proceedings of CIKM, 409–418. ACM.
Morante, R., and Blanco, E. 2012. *SEM 2012 Shared Task:
Resolving the scope and focus of negation. In Proceed-
ings of the First Joint Conference on Lexical and Compu-
tational Semantics (*SEM), 265–274. Association for Com-
putational Linguistics.
Morstatter, F.; Pfeffer, J.; Liu, H.; and Carley, K. M. 2013. Is
the Sample Good Enough? Comparing Data from Twitter’s
Streaming API with Twitter’s Firehose. In Proceedings of
ICWSM.
Nakov, P.; Kozareva, Z.; Ritter, A.; Rosenthal, S.; Stoyanov,
V.; and Wilson, T. 2013. Semeval-2013 task 2: Sentiment
analysis in twitter. In Proceedings of SemEval.
Ounis, I.; Macdonald, C.; Lin, J.; and Soboroff, I. 2011.
Overview of the TREC-2011 microblog track. In Proceed-
dings of the 20th Text REtrieval Conference (TREC 2011).
Pak, A., and Paroubek, P. 2010. Twitter as a corpus for
sentiment analysis and opinion mining. In Proceedings of
LREC, volume 10, 1320–1326.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Petrovic, S.; Osborne, M.; and Lavrenko, V. 2010. The Ed-
inburgh Twitter Corpus. In Proceedings of the NAACL HLT
2010 Workshop on Computational Linguistics in a World of
Social Media, 25–26.
Rosenthal, S.; Nakov, P.; Ritter, A.; and Stoyanov, V. 2014.
Semeval-2014 task 9: Sentiment analysis in twitter. In Pro-
ceedings of SemEval.
Rout, D.; Bontcheva, K.; Preoţiuc-Pietro, D.; and Cohn, T.
2013. Where’s @Wally?: a Classification Approach to Ge-
olocating Users Based on Their Social Ties. In Proceedings
of the 24th ACM Conference on Hypertext and Social Media.
Schwartz, H. A.; Eichstaedt, J. C.; Kern, M. L.; Dziurzynski,
L.; et al. 2013. Characterizing geographic variation in well-
being using tweets. In Proceedings of ICWSM.
Strnadova, V.; Jurgens, D.; and Lu, T.-C. 2013. Characteriz-
ing online discussions in microblogs using network analysis.
In Proceedings of the AAAI Spring Symposium on Analyzing
Microtext.
Tjong Kim Sang, E. F., and Buchholz, S. 2000. Introduction
to the CoNLL-2000 Shared Task: Chunking. In Proceed-
ings of CoNLL, 127–132. Association for Computational
Linguistics.
Voorhees, E. M.; Harman, D. K.; et al. 2005. TREC: Ex-
periment and evaluation in information retrieval, volume 1.
MIT press Cambridge.

